目前,已经有很多探讨 AI 加速器的论文。如本系列调查的第一篇论文就有探讨某些 AI 模型的 FPGA 的峰值性能,之前的调查都深入覆盖了 FPGA,因此不再包含在本次调查中。这项持续调查工作和文章旨在收集一份全面的 AI 加速器列表,包括它们的计算能力、能效以及在嵌入式和数据中心应用中使用加速器的计算效率。与此同时文章主要比较了用于政府和工业传感器和数据处理应用的神经网络加速器。前几年论文中包含的一些加速器和处理器已被排除在今年的调查之外,之所以放弃它们,是因为它们可能已经被同一家公司的新加速器替代、不再维护或者与主题不再相关。
在极低功耗的芯片中,除了用于机器学习的加速器之外,还没发现其他额外功能。在极低功耗芯片和嵌入式类别中,发布片上系统(SoC)解决方案是很常见的,通常包括低功耗 CPU 内核、音频和视频模数转换器(ADC)、加密引擎、网络接口等。SoC 的这些附加功能不会改变峰值性能指标,但它们确实会对芯片报告的峰值功率产生直接影响,所以在比较它们时这一点很重要。